Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 445: 138661, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38350195

RESUMO

To improve the poor water solubility and oral bioavailability of tyrosol, novel tyrosol liposomes (Tyr-LPs) were prepared by pH-driven method. Fourier transform infrared (FTIR) absorption spectra and X-ray diffraction (XRD) analysis indicated that Tyr-LPs were successfully encapsulated and tyrosol was in an amorphous state in liposomes. When tyrosol content in Tyr-LP was 1.33 mg/ml and the Tyr:LP (mass ratio) = 1:2, favorable dispersibility of Tyr-LP was exhibited, with an instability index of 0.049 ± 0.004, PDI of 0.274 ± 0.003, and the EE of 94.8 ± 2.5 %. In vivo pharmacokinetic studies showed that after oral administration of tyrosol or Tyr-LP (Tyr:LP = 1:2), concentration-versus-time curve (AUC0-720mins) and maximum concentration (Cmax) values of Tyr-LP was respectively 1.5-fold (P < 0.01) and 2.25-fold (P < 0.01) higher than tyrosol, which indicated that the oral bioavailability of tyrosol was effectively improved in Tyr-LPs. Our study thereby provides theoretical support for the application of Tyr-LP for optimal delivery of tryosol.


Assuntos
Lipopolissacarídeos , Lipossomos , Álcool Feniletílico/análogos & derivados , Ratos , Animais , Disponibilidade Biológica , Ratos Sprague-Dawley , Solubilidade , Administração Oral , Concentração de Íons de Hidrogênio
2.
J Sci Food Agric ; 103(6): 3065-3076, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36424723

RESUMO

BACKGROUND: This study aimed to uncover the potential effects of zingerone (ZIN), one of the bioactive compounds in ginger, on the development of obesity as well as the mechanisms responsible for these effects in C57BL/6J mice fed with a high-fat diet (HFD). RESULTS: Supplementation with 0.2% (wt/wt) zingerone for 16 weeks significantly reduced the final body weight, liver weight, and epididymal white adipose tissue (eWAT) weight without changing the food intake of the mice when compared with the HFD group. The hyperlipidemia of HFD-fed mice was ameliorated after zingerone administration, including decreased plasma triacylglycerol (TG) and total cholesterol (TC) level. The lipid content in liver was lower and the adipocyte size in eWAT and inguinal white adipose tissue (iWAT) was smaller in HFD + ZIN-fed mice compared with HFD group. Zingerone also binds with nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARα) with an optimal docking energy of -7.31 kJ/mol. Uncoupling protein 1 (UCP1), PPAR-γ coactivator-1α (PGC-1α), and PR domain containing 16 (PRDM16), the downstream genes of PPAR which are related to thermogenic function of adipocytes, were significantly increased in both brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT) after zingerone administration, in comparison with HFD fed mice. Zingerone intake also restructured the community composition of gut microbiota. The ratio of Firmicutes to Bacteroidetes was decreased, and the relative abundance of Akkermansia_mucinphila was increased. CONCLUSION: Zingerone can attenuate obesity and related symptoms in HFD-fed mice, probably through the modulation of PPARα-thermogenesis-gut microbiota interactions. © 2022 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , PPAR alfa , Camundongos , Animais , PPAR alfa/metabolismo , Camundongos Obesos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Termogênese
3.
Food Funct ; 13(24): 13052-13063, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36468583

RESUMO

As aromatic compounds found within red fruits and berries, raspberry ketones (RK) have the potential for nonalcoholic fatty liver disease (NAFLD) amelioration. However, the mechanism of RK on NAFLD is unclear, and their bioactive metabolite is unknown. As the major metabolites of RK that are mainly distributed in the liver, rhododendrol (RHO) is used in our current study to test whether RHO accounts for the beneficial effect of RK on NAFLD and the underlying mechanism. In a 16-week trial, RHO significantly decreased final body weight, improved serum lipid profile and ameliorated liver inflammation. Moreover, RHO changed the gut microbiota composition, including lean phenotype-related genera, such as Bacteroides, Bilophila, Oscillibacter, Lachnospiraceae_bacterium_28_4 and Bacteroides sartorii. Liver metabolomics analysis indicated that RHO enhanced the abundance of metabolites related to alanine, aspartate, and glutamate metabolism, as well as arginine and proline metabolism. Spearman correlation analysis revealed that these metabolites were positively correlated with the gut genera enriched by RHO. Here, our findings suggested that the metabolic effects of RK might be partially attributed to its metabolite-RHO, and mice supplemented with RHO have dramatically altered hepatic metabolisms concurrent with shifts in specific gut bacteria.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
4.
J Agric Food Chem ; 70(36): 11224-11235, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36048007

RESUMO

The present study investigated the mechanism underlying the impact of hesperidin (HES) on nonalcoholic fatty liver (NAFLD). C57BL/6J male mice were administered a low-fat diet, high-fat diet (HFD), or HFD plus 0.2% (wt/wt) HES (HFD + HES) diet. After 16 weeks of intervention, the mice in the HFD+HES group showed a lower final body weight and liver weight and improved serum lipid profiles when compared with the HFD group. Alleviation of liver dysfunction induced by HFD was observed in HES-fed mice, and the expression of genes involved in lipid metabolism was also altered. Moreover, HES changed the composition of the intestinal microbiota and enriched specific genera such as Bacteroidota. Liver metabolomics analysis indicated that HES enhanced the abundance of metabolites in arginine-related as well as mitochondrial oxidation-related pathways, and these metabolites were predicted to be positively correlated with the gut genera enriched by HES. Together, these results indicate that HFD-fed mice supplemented with HES showed a markedly regulated hepatic metabolism concurrent with shifts in specific gut bacteria.


Assuntos
Microbioma Gastrointestinal , Hesperidina , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Modelos Animais de Doenças , Hesperidina/metabolismo , Hesperidina/farmacologia , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...